

TWO STAGE REVISION

F. Benazzo

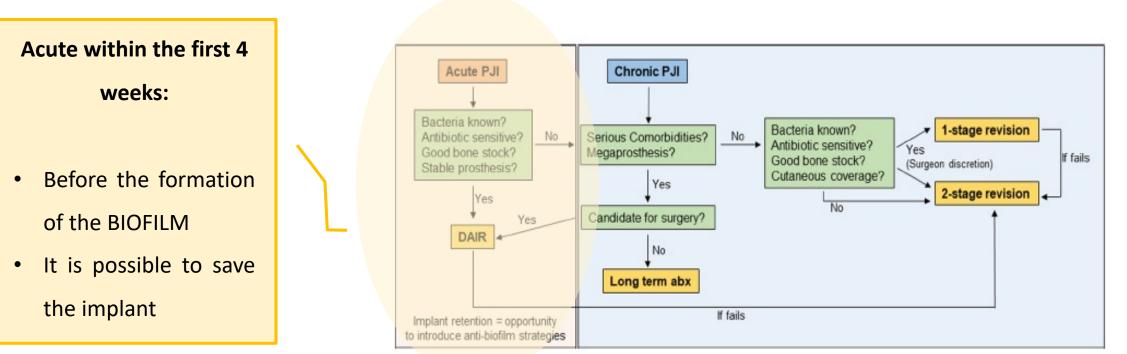
018 International Consensus Meeting on Periprosthetic Joint Infections

- Gold Standard in the Prevention, Diagnosis, and Treatment of PJI
- EBM approach
- Minimum standards for prevention, diagnosis, and treatment were established.

Proceedings of the International

Consensus Meeting on Periprosthetic Joint Infection

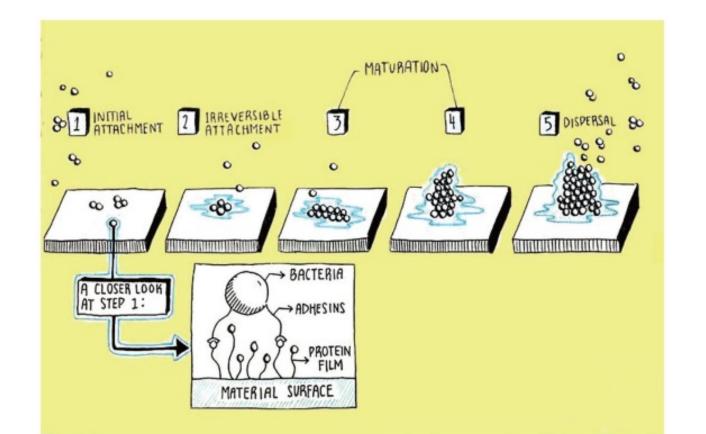
> Chairmen: Thorsten Gehrke MD Javad Parvizi MD, FRCS


Treatment algorithm

Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies

Anabelle Visperas¹ | Daniel Santana^{1,2} | Alison K. Klika¹ | Carlos A. Higuera-Rueda³ | Nicolas S. Piuzzi¹

J Orthop Res., 2022


Historically the treatment algorithm is **time dependent**

WHY TIME DEPENDENT?

The formation of the BIOFILM requires 4 phases:

- 1. Initial bacterial aggregation
- 2. Aggregation and production of EPS for binding
- Modification of the microenvironment (PH, nutrient concentration, production of signal molecules) and biofilm maturation
- 4. Cell dispersion and bacterial propagation from native biofilm

Biofilm formation in periprosthetic joint infections

Amelia Staats^{1,2,#}, Daniel Li^{3,#}, Anne C. Sullivan³, Paul Stoodley^{1,3,4} ¹Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA;

PROSTHETIC JOINT INFECTIONS

Treatment options

(DAIR - Debridement And Implant Retention

One-stage revision

Two-stage revision

One-stage revision

The one-stage approach raises several concerns

- 1. Pre-op diagnosis
- 2. OR set-up
- 3. Debridement
- 4. Implant
- 5. Intraop cultures
- 6. Recurrence

+1: Good outcomes reported in the literature are center-specific

Two-stage revision

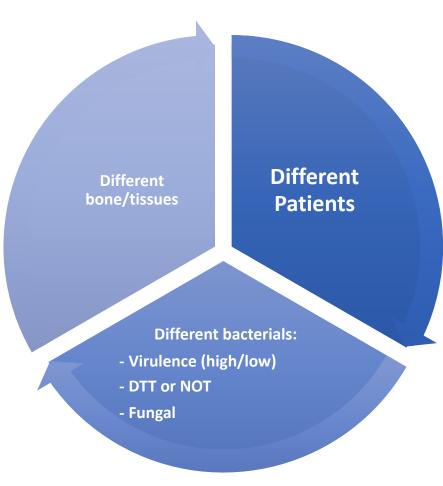
- treat infection (current success rate: range 74.5-100%)
- high-dose local antibiotic delivery
- maintain joint space
- reduce scarring
- reduce bone loss

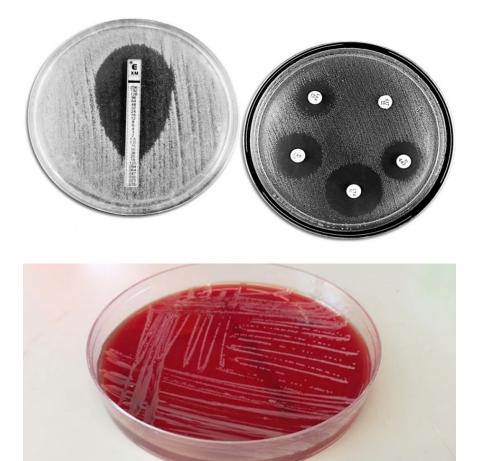
FROM 2018

Published more than 2000 works

Since the last consensus

WHAT IS CHANGING?


on PJIs


CUSTOMIZATION OF PJI MANAGEMENT

DIFFICULT-TO-TREAT BACTERIA

Article

Superinfection with Difficult-to-Treat Pathogens Significantly Reduces the Outcome of Periprosthetic Joint Infections

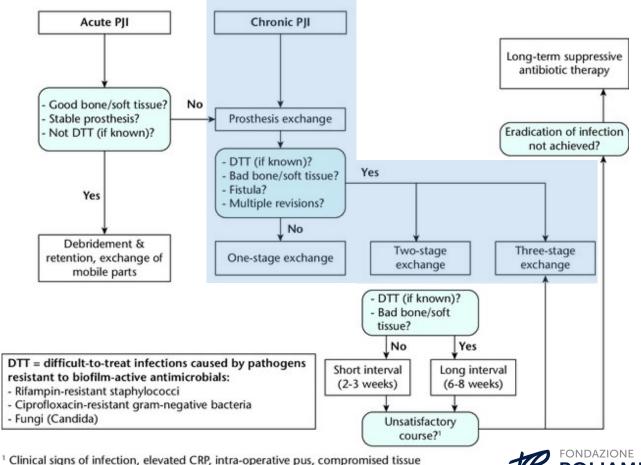
Ali Darwich ¹,*[®], Franz-Joseph Dally ¹, Khaled Abu Olba ¹, Elisabeth Mohs ¹, Sascha Gravius ¹, Svetlana Hetjens ², Elio Assaf ^{1,†} and Mohamad Bdeir ^{1,†}

«Infections supported by bacteria against

which there are no available antibiotics

active against BIOFILM»

Modern treatment protocols:


 Maintained the cornerstone of PJI's time determination

- Growing importance of bacterium-specific factors
 - DTT or NOT-DTT bacteria

Periprosthetic joint infection: current concepts and outlook

TREATMENT ALGORITHM

Istituto Ospedaliero

The fate of fungal periprosthetic joint infection after total knee arthroplasty

Hong Yeol Yang ¹, Hyun Ho Shin ¹, Ji Won Kim ¹, Jong Keun Seon ²

Affiliations + expand PMID: 37542541 DOI: 10.1007/s00264-023-05895-7

> J Arthroplasty. 2023 Nov;38(11):2464-2471.e1. doi: 10.1016/j.arth.2023.05.003. Epub 2023 May 10.

Treatment and Outcomes of Fungal Prosthetic Joint Infections: A Systematic Review of 225 Cases

Marcos R Gonzalez ¹, Angad D S Bedi ¹, Daniel Karczewski ¹, Santiago A Lozano-Calderon ¹

Affiliations + expand PMID: 37172795 DOI: 10.1016/j.arth.2023.05.003

•Outcomes:

- Infection Eradication Rates: success rate in eradicating fungal infections 70%: high rate of treatment failure
- Mortality and Morbidity: significant morbidity

•Risk Factors for Poor Outcomes:

- immunosuppression
- presence of multiple comorbidities
- delayed initiation of appropriate antifungal therapy

Antibiotic spacers

Review > Arch Bone Jt Surg. 2020 Jan;8(1):11-20. doi: 10.22038/abjs.2019.42018.2141.

The Use of Antibiotic Impregnated Cement Spacers in the Treatment of Infected Total Joint Replacement: Challenges and Achievements

Omid Shahpari ¹, Alireza Mousavian ¹, Nafise Elahpour ¹, Michael-Alexander Malahias ², Mohammad H Ebrahimzadeh ¹, Ali Moradi ¹ ³

- Antibiotics can cause renal failure
- Local aministration of antibiotics may have many advantages

Study	No. of Patient	Cement/Antibiotic Formulation	Complications	
Jung et al.	82 (hip spacers) 0.5 g gentamicin and 2 g vancomycin / 40 g cement		5 cases of acute renal failure (80).	
Hsieh et al.	42 (hip spacers)	480 mg liquid gentamicin + 3 g vancomycin / 40 g of cement	0.5 mg/DL increase in serum creatinine (81).	
Springer et al.	36 knees 34 patients	10.5g vancomycin + 12.5 g gentamicin / 40 g cement	no complications reported (13).	
Dovas et al.	a 61-year-old patient	high-dose gentamicin-vancomycin impregnated cement	acute renal failure (82).	
Evans et al.	44 (total 54 periprosthetic infections)	4 g vancomycin + 4.6 g tobramycin / 40 cement	no complications reported (29).	

Calcium sulphate beads (CSB)

BIOMATERIALS

Use of Stimulan absorbable calcium sulphate beads in revision lower limb arthroplasty

SAFETY PROFILE AND COMPLICATION RATES

BENEFITS:

- Dissolves in 3 weeks with no need for removal
- Constant and predictable release of antibiotic
- Can be used for heat sensitive antibiotics

Antibiotic Added Beads

Different Patients

> J Orthop Surg Res. 2023 Oct 27;18(1):804. doi: 10.1186/s13018-023-04293-4.

Concomitant malnutrition and frailty are significant risk factors for poor outcome following two-stage revision for chronic periprosthetic joint infection

Tengbin Shi ^{# 1}, Zhi Chen ^{# 1}, Dingxiang Hu ^{# 2}, Dingwei Wu ¹, Zhenyu Wang ¹, Wenge Liu ³ Affiliations + expand PMID: 37891602 PMCID: PMC10612160 DOI: 10.1186/s13018-023-04293-4

malnourished and frail group:

- Functional Outcomes: significantly lower scores on physical and mental health assessments, including the SF12-PCS, SF12-MCS, Harris Hip Score (HHS), and Knee Society Score (KSS)
- Reinfection Rates: The incidence of reinfection was higher
- Complications: higher rates of postoperative complications, including increased need for transfusions (OR 2.92), readmissions within 60 days (OR 4.91), and extended hospital stays post-operation (OR 5.78).

Different Patients

Articulated or mobile spacer?

Review > Arthroplasty. 2025 Jan 9;7(1):4. doi: 10.1186/s42836-024-00288-6.

Prosthetic articulating spacers as a preferred option for two-stage revision arthroplasty in chronic periprosthetic joint infection

Jiamin Lin 1 , Hongyan Li 1 , Yang Chen 1 , Haiqi Ding 1 , Qijin Wang 2 , Jianhua Lv 2 , Wenbo Li 1 , Wenming Zhang 1 , Xinyu Fang 3

Affiliations + expand PMID: 39780262 PMCID: PMC11714949 DOI: 10.1186/s42836-024-00288-6

Advantages of Prosthetic Articulating Spacers

• Functional Benefits:

- Preserve range of motion.
- Reduce soft tissue contractures.
- Enhance patient mobility during the interim period.

Clinical Outcomes:

- High rates of infection eradication.
- Improved patient satisfaction.
- Potential for better postoperative joint function

compared to static spacers.

Articulated or mobile spacer?

Contraindications to mobile?

> Knee Surg Sports Traumatol Arthrosc. 2024 Jul;32(7):1766-1774. doi: 10.1002/ksa.12187. Epub 2024 Apr 21.

Static spacers play a crucial role in the treatment of complex periprosthetic joint infections of the knee

Andre Lunz ¹, Georg W Omlor ^{1 2}, Moritz N Voss ¹, Andreas Geisbüsch ¹, Tobias Renkawitz ¹, Burkhard Lehner ¹

Affiliations + expand PMID: 38643391 DOI: 10.1002/ksa.12187 The choice is influenced by various patient-specific factors:

Indications for Using Static Spacers:

•Severe Bone Loss

•Extensive Soft Tissue Damage

•Ligamentous Instability

•Persistent Infection Concerns

Customized intraoperatively molded articulating cement spacers for two-stage revisions TKA with major bone defects

European Journal of Orthopaedic Surgery & Traumatology 2021

Stefano Marco Paolo Rossi¹ · Marta Medetti² · Loris Perticarini¹ · Matteo Ghiara² · Francesco Benazzo^{1,3}

Customized intraoperatively molded articulating cement spacers for two-stage revisions TKA with major bone defects

European Journal of Orthopaedic Surgery & Traumatology 2021

Stefano Marco Paolo Rossi¹ · Marta Medetti² · Loris Perticarini¹ · Matteo Ghiara² · Francesco Benazzo^{1,3}

Organism		Outcomes	SS	MAS	CMAS	HS
Staphylococcus species	70% 20% 35% us 65% 10%	OKS				
Streptococcus species Methicillin-/vancomycin-resistant		Pre-op	12.3 (3)	12.5 (2)	12.3 (3)	12.3 (3)
		With spacer	13.3 (2)	22.3 (2)	23.3 (2)	28.3 (2)
		Final f-u	29.1 (4)	34.1 (4)	33.4 (4)	35.1 (4)
Methicillin-resistant Staphylococcus aureus			(P < 0000.1)	(<i>P</i> < 0000.1)	(<i>P</i> < 0000.1)	(<i>P</i> < 0000.1)
Other organisms		EQ 5D				
		Pre-op	0.22 (0.7)	0.22 (0.6)	0.21 (0.7)	0.23 (0.7)
		With spacer	0.30 (0.5)	0.50 (0.5)	0.50 (0.4)	0.62 (0.5)
Static spacer (SS)	Final f-u	0.69 (0.5)	0.77 (0.5)	0.76 (0.5)	0.77 (0.5)	
Molded articulating spacer (MAS)		(P < 0000.1)	(<i>P</i> < 0000.1)	(<i>P</i> < 0000.1)	(<i>P</i> < 0000.1)	
• Customized molded articulating spacer (C	EQ VAS					
Hofmann Spacer (HS)	-	Pre-op	25.2 (3)	24.2 (3)	24.7 (2)	24.5 (3)
		With spacer	40 (3)	45 (5)	45 (4)	60 (4)
		Final f-u	73.1 (3)	78.1 (3)	77.1 (3)	79.1 (3)
		(P < 0000.1)	(P < 0000.1)	(P < 0000.1)	(P < 0000.1)	
	-	(P < 0000.1)	(P < 0000.1)	(P < 0000.1)		

Optimal reimplantation timing

> J Orthop Traumatol. 2024 Mar 25;25(1):15. doi: 10.1186/s10195-024-00745-7.

Evaluation of time to reimplantation as a risk factor in two-stage revision with static spacers for periprosthetic knee joint infection

Jan Puetzler ¹, Marc Hofschneider ², Georg Gosheger ², Christoph Theil ², Martin Schulze ², Jan Schwarze ², Raphael Koch ^{# 3}, Burkhard Moellenbeck ^{# 2}

Affiliations + expand PMID: 38528169 PMCID: PMC10963354 DOI: 10.1186/s10195-024-00745-7 • Time to Reimplantation:

Delays in reimplantation are associated with higher rates of complications

Optimal Timing: Reimplantation within 8–12 weeks

•Extended Delays:

•Increased risk of joint stiffness.

•Greater difficulty in reimplantation due to scar tissue formation.

•Higher infection recurrence rates.

Optimal reimplantation timing

1. Serological Markers

> J Orthop Traumatol. 2024 Mar 25;25(1):15. doi: 10.1186/s10195-024-00745-7.

Evaluation of time to reimplantation as a risk factor in two-stage revision with static spacers for periprosthetic knee joint infection

```
Jan Puetzler <sup>1</sup>, Marc Hofschneider <sup>2</sup>, Georg Gosheger <sup>2</sup>, Christoph Theil <sup>2</sup>, Martin Schulze <sup>2</sup>, Jan Schwarze <sup>2</sup>, Raphael Koch <sup># 3</sup>, Burkhard Moellenbeck <sup># 2</sup>
```

Affiliations + expand PMID: 38528169 PMCID: PMC10963354 DOI: 10.1186/s10195-024-00745-7

•C-Reactive Protein (CRP):

- Optimal level: <10 mg/L.
- A significant decrease from pre-debridement levels indicates improvement.

2. Synovial Markers

•Synovial fluid leukocyte count:

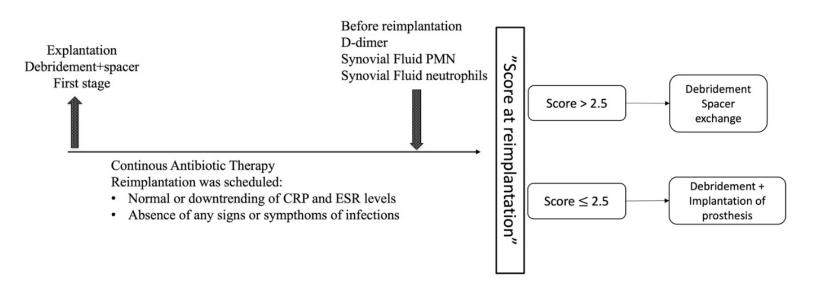
- <3,000 cells/µL for knee prostheses.
- <1,500 cells/µL for hip prostheses.

•Neutrophil percentage:

• <80% neutrophils in synovial fluid.

•Alpha-Defensin:

• A highly sensitive and specific test for persistent infection, which must be negative before reimplantation.


Optimal reimplantation timing

Upcoming evidence in clinical practice of two-stage revision arthroplasty for prosthetic joint infection

Tiziana Ascione^{1*}, Giovanni Balato² and Pasquale Pagliano^{3,4}

Journal of Orthopaedics and Traumatology, (2024)

- No antibiotic holiday before reimplantation •
- CRP, ERS, D-Dimer (this last the only reliable marker in predicting recurrence of infection •

Repeat 2 stage?

> Arch Orthop Trauma Surg. 2023 Apr;143(4):1731-1740. doi: 10.1007/s00402-021-04330-z.
Epub 2022 Jan 4.

Repeat two-stage exchange arthroplasty for recurrent periprosthetic hip or knee infection: what are the chances for success?

A C Steinicke ^{# 1}, J Schwarze ^{# 1}, G Gosheger ¹, B Moellenbeck ¹, T Ackmann ¹, C Theil ²

• Success Rates: Repeat two-stage exchange arthroplasty for recurrent periprosthetic joint infection (PJI) of the hip or knee achieves infection eradication in approximately 60–70% of cases.

•Risk Factors for Failure:

•Highly virulent organisms (e.g., MRSA, fungal infections).

•Severe bone loss or soft tissue damage.

•Multiple previous surgeries, leading to compromised local anatomy.

Functional Outcomes: Even when infection is controlled, functional recovery tends to be lower

> J Arthroplasty. 2024 Sep 20:S0883-5403(24)00962-8. doi: 10.1016/j.arth.2024.09.024. Online ahead of print.

Can a 1.5-Stage Revision Be an Effective Alternative for Chronic Periprosthetic Hip and Knee Infections? A Systematic Review and Meta-Analysis

Enrico Festa¹, Tiziana Ascione², Domenico De Mauro³, Donato Di Gennaro¹, Andrea Baldini⁴, Giovanni Balato¹

Affiliations + expand

PMID: 39307205 DOI: 10.1016/j.arth.2024.09.024

1.5-stage Revision

1.5-Stage Revision

A hybrid approach combining one-stage and

two-stage revision techniques for managing

chronic periprosthetic joint infections (PJIs)

1.5-stage Revision

Procedure:

• Use of an articulating spacer made from semi-

definitive prosthetic components.

• Components are fixed with antibiotic-loaded cement

to deliver localized infection control.

• Allows partial joint functionality during treatment.

Advantages:

- Balances infection eradication and functional outcomes.
- Reduces the need for multiple surgeries compared to traditional twostage revisions.

Evaluation:

• Following targeted antibiotic therapy, components may be retained or replaced based on infection resolution and patient status.

One and a Half-Stage Revision With Prosthetic Articulating Spacer for Definitive Management of Knee Periprosthetic Joint Infection

Ahmed Siddiqi, DO, MBA ^{a,b,c} · Yusuf Mahmoud, MD ^b · Salvador A. Forte, DO ^d · Thomas A. Novack, MD ^e · James Nace, DO, FAOAO, MPT ^A ^e 🖾

comparable reinfection rates to traditional methods

Proper patient selection and meticulous surgical technique are essential for its success

Contraindications of 1.5-Stage Revision

- Uncontrolled Systemic Infection
- Severe Soft Tissue Damage
- Multidrug-Resistant Pathogens
- Bone Loss
- Poor Host Factors:
 - Immunocompromised patients (e.g., HIV, chemotherapy, or advanced diabetes).
 - Severe comorbidities that increase surgical risk or limit recovery.
- Non-compliance: Patients unable or unwilling to follow postoperative care, including antibiotic therapy and physical therapy.
- Joint Instability or Structural Damage: Conditions that compromise the ability to achieve stability with an articulating spacer.

Conclusions : Two stage revision indications

- DDT Bacteria
- Host: frail/malnourished (but it could be a valid indication for One Stage)
- Previous surgeries
- Less aggressive surgery compared to One Stage
- Consider the 1.5 Stage Revision

Sezione di Chirurgia Protesica ad Indirizzo Robotico Unità di Traumatologia dello Sport U.O.C. Ortopedia e Traumatologia